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Force identification is a type of system identification preceui.ttt

which determines applied forces from system response measurement.;. To

iuentify the force, one can consider the system model and parameters

which are known, and then use the response that is measured to dotermine

the unknown forces. In this research, a more direct way to identify tLe

unknown force without knowing the model of the system is proposed.

However, to postulate the system model. and its parameters is difficult

to justify, especially when considering a nonlinear system where the

model poses a great deal of unknowns or inherent characteristics of the

mathematical problem. The approach called the sum of weighted

acceleration technique, SWAT, is a method that can predict input forces

with measured linear and nonlinear structural responses. SWAT uses

measured accelerations multiplied by effective or optimal weight-s to

estimate the input force. The effective weights are the coefficients of

an equivalent mass at each acceleration location. Once the eftective

weights are determined, tme unknown input forces can be predict &d by

us ing a mathematical formul ation, wli(h is the goal of force

identification. The apprloach of SWAT was val idated in the t ii,, iatI

frequency doinain. For practi cal applications, the approach of S, A'' was

vi



extended to a finite clement approach for further validation of large.r

elastic structufes. The results show that the force calculated from1

SWAT accuratel- prediLcts the force which was inputted to the structurt.
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CIAPTER 1.

INTRODUCTION

1.0. Introduction.

In structural analysis, an engineer needs to evaluate the response

of a complex structure which is subjected to dynamic loads, such as a

conventional (nonnuclear) blast, a nuclear blast or an earthquake. This

assessment generally involves an analytical simulation of an

environmental load, an analytical structural model, and a method for

determining structural response. However, another type of system

identification procedure based on structural response can also be used.

This technique involves finding the input forces to a given structure

when a given structural response is known.

System identification uses mathematical models which approximate an

engineer's materials or structures. Engineers analyze structural

systems through mathematical models for static and dynamic loads for the

purpose of design, evaluation, control, etc. Engineering approaches to

problems are broadly categorized as direct or inverse problems according

to the amount of knowledge available to develop a model. The direct

problem assumes that the differential equations and mechanical

properties are defined for a system. In a direct problem, an engineer

uses a model to analytically determine structural responses from

simulated environmental loads. This approach is widely used in the

engineering fields; however, its usefulness is limited by the

mathematical model's degree of realistic representation. Without

sufficient data to develop a complete model, a second method, called an

inverse or system identification problem, can be used to model the



structure response. This method estimates model response by techniques

using data from measured structural response to known or unknown applied

excitations. System identification problems deal with improving the

model of a system before direct problem procedures are applied. When

total prior knowledge is lacking about a system and only input-output:

data are available, both the parametric form and parameters must be

determined. This is referred to as the black box problem. When the

form of the model is known or assumed, such as differential equations or

state models, only the specific parameter values must be determined.

This is referred to as the gray box problem. Solving the black box

problem would be the most generalized modeling technique, but not the

most realistic or cost effective means. System identification problems

in nature are generally unstable or ill-conditioned; therefore, use of

any prior knowledge is usually the preferred method of developing a

model.

The gray box, parameter estimation, cr parameter identification

method in structural engineering has seen more activity in the last

decade as shown in the literature review. The basic idea of parameter

identification is to fit input-output data to a parametric form by

minimizing the error between the real data and the data predicted from

the model.

Models that predict the input forces for a structure, when given the

structural response data, are usually formulated under the class of gray

box problems. For complex structures, the process of developing models

which determine force directly from structural properties is not an easy

task. The equations tend to be ill-conditioned, which means small

changes in the data can lead to large changes in the solution. The

2



forward problem, determining the response of a structure when given the

force which was applied, has smoothing properties which are lost in the

inverse problem. These smoothing properties encourage using system

identification techniques for estimating forces. For this type of

problem, force identification is defined as the process of determining a

model which computes loads from measurements of the system.

Force identification is needed for a number of present and future

structural problems. As force identift-ation is perfected, its

application to structural problems will increase. An example is the

design of weapon systems such as water entry and earth penetrators.

This is done by identifying the interactive forces between the weapon's

structure and the target, and applying them to the structural design

process. Force identification would have applications in controlling

the movement of (1) tall buildings due to wind loads, (2) vehicles

moving through space, and (3) large space antennas and platforms. Also,

there are applications for force identification in aiding the evaluation

of damage for structures that encounter earthquakes, blast loads, and

other forces. The platforms in space or contaminated areas could be

monitored with minimum visual inspection. Another benefit is the

determination of equivalent dynamic loading, which is useful in

vibration testing. This list does not include all engineering

disciplines, but will still continue to increase as new developments

occur.

1.1. Literature Review.

The investigation described in this report established mathematical

models and procedures to identify input forces to structures. Force

3



identification is generally under the broad heading of system

identification; therefore, for continuity this literature review is

divided into two sections. The first section is on system

identification in general, and the second section specifically relates

to force identification.

1.1.1. System Identification Overview.

As the previous section stated, system identification is a pl)octss

of estimating a model by techniques using input-output data. System

identification started evolving in structural engineering in the, early

1970's, but has been rapidly developing in control theory since the

1960's. Even today, researchers and engineers are expanding the

techniques and passing information from one discipline to the other.

Two symposia (Eykhoff, 1981; Bekey and Sardis, 1982) sponsored by the

International Federation of Automatic Control in recent years were

dedicated to system identification. Early surveys on system

identification in general by Bekey (1970) and Astr6m and Eykhoff (1971)

still provide a good introduction to system identification. Iii

particular, Astr6m and Eykhoff provided 230 references on the topic at

the time of the publication. A later book by Eykhoff (1974) provides a

more detailed discussion on system identification techniques. Another

survey by Rodeman and Yao (1973) provides one of the first structural

reviews. They presented modal and non-modal models, but their main

emphasis was identifying parameters for modal models. This is not

surprising since modal analysis has been used for structural analysis

since the 1940':. Modal analysis is the process of analyzing a

structure using modal properties such as damping, natural frequencies,

4



and mode shapes. An early paper by Kennedy and Pancu (1947) introduced

separating frequency response functions by circle fitting. Their

motivation was to analyze, identify and describe normal modes of

vibrations for airplanes from vibrational measurements. Bishop and

Gladwell (1963) investigated further into the theory of resonance

testing with more discussion on damping of the structure system. These

papers are two of the most noted papers through the years that show the

development of modal analysis. Ibifiez (1973) presented the

identification of dynamic properties such as damping, eigenfrequencies,

mode shapes and nonlinear effects with system identification techniques.

Collins, et al. (1974) experimentally determined natural frequencies and

mode shapes to modify the structural parameters of a finite element

model. Recently, Luk and Mitchell (1983) summarized system

identification for a modal analysis method which experimentally

determines the system parameters of a structure. A recent book by Ewins

(1984) provides an introduction to present day modal testing. The

papers described below show that the modal model is still used as part

of a system identification process for structures. Juang and Pappa

(1987) discussed relating modal testing and system identification and

postulated that combining the two would lead to control of large space

antennas and platforms.

Two structural identification surveys by Hart and Yao (1977) and

Kozin and Natke (1986) presented system identification by dividing the

techniques into time domain and frequency domain. Hart and Yao provided

time and frequency domain technology trees and grouped three standard

approaches for modal parameter ostimation defined in Table I.I.

Ljung and Clover (1981) compared frequency domain and time domnain
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Table 1.1 - Structural System Identification Procedures
(Hart and Yao, 1977).

Method Modal Structural
Measurements Parameters

Least
Squares Deterministic Deterministic

Weighted Least
Squares Stochastic Deterministic

Statistical
Structural

Identification Stochastic Stochastic

methods in system identification on how they differ and how they

complement each other. A structural identification example in which

both domains were used was McVerry (1980), who used an output-error

approach in the frequency domain to identify the parameters of the lower

modes of a linear time invariant model from recorded earthquake

response. Then a complementary study in the time domain was presented

by Beck and Jennings (1980). They both used system identification

techniques of least squares. In both domains the basic methods of

system identification are (Juang and Pappa, 1987):

Least Squares

- Ordinary least squares

- Stochastic approximation

- Extended Kalman-Bucy filtering

- Instrtiumental Variable Method
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- Generalized least squares

- Extended least squares (pseudolinear regression)

- Square root filtering

Maximum likelihood estimation

Bayesian approach

Minimum realization

Ladder or lattice filtering

From the previous list, least squares techniques have a number of

subheadings. Hsia's book (1977) discusses least square techniques. The

least square techniques have been used in structural identification with

favorable results. Caravani and Thomson (1974) used a frequency domain

algorithm to estimate the viscous-damping for multi-degree structures.

Bendat (1976) used a least square technique to identify frequency

response functions for multiple input-output data. Caravani, Watson,

and Thomson (1971) used a recursive least square time domain approach to

identify structural damping and stiffness parameters. Paez, et al.

(1982) and Wang, et al. (1982,1983) presented methods which used both a

time and frequency domain least-squares parameter identification for

linear differential equations up to the third order and time varying

linear models. The models were used to represent a hysteretic system

which was used for damage assessment. They found the frequency domain

approach more suited to identify the parameters of these models. Gersh,

et al. -1.973,1974a,1974b) were concerned about estimating the natural

frequency and damping parameters. They estimated the parameters using

an auto-regressive moving average time series with a two-stage least

square method and the maximum likelihood procedures.

There are a wide variety of techniques to attack the unstable
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characteristics of system identification problems. One of the reasons

for the unstable characteristics is the noise in the measured data.

Maine and Iliff (1981) discussed this problem of noise as they presented

a maximum likelihood technique. Adding constraints and bounds to least

square methods (Hanson, 1986) helps to stabilize the system

identification problem. Craig and Blair (1985) used a generalized

multiple input, multiple output modal parameter estimation algorithm for

multiple input forces to be applied simultaneously and for an arbitrary

number of acceleration response measurements. The modal parameters were

obtained through eigenvalue techniques. Subbayyan and Nagarajan (1977)

use a modified parameter algorithm for linear multi-variable discrete

time systems by the use of a gradient estimation approach to improve

convergence. Shinozuka, Yun, and Imai (1980) used an auto-regressive

and moving average model with instrumental variable and maximum

likelihood methods.

Distefano and Pena-Pardo (1976) determined an optimal linear model

for a structure frame. The parameters were calculated by nonlinear

fitting methods. This paper showed a common example of determining a

linear model to estimate nonlinear behavior. Nonlinearity is always

present to some degree in engineering problems. Since linear theory is

thoroughly developed, it is customary to model nonlinear systems by

linear models when possible.

There is a vast area of nonlinear modeling that needs to be

explored. Tomlinson (1986) presented a review on the detection,

identification, and quantifications of nonlinearity in modal analysis.

Two other surveys by Mertens, et al. (1986) and Natke, et al. (1988)

discussed how to detect nonlinearity in mechanical systems.
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The actual identification of nonlinear models is more complex than

linear models. Singh and Subramanian (1980) attacked the problem from a

frequency response identification. Distefano and Rath (1975) presented

methods of identification for the determination of nonlinear parameters

associated with third-order damping and stiffness terms. Their

application was for seismic conditions. Billings (1980) presented a

survey on nonlinear system identification. The significant trend in

nonlinear identification is to use nonparametric models. This is when

the model for the system is not defined or assumed. An example is the

functional series method. Wellstrad (1981) presented a nonparametric

method of spectral and impulse response estimation. Masri, et al.

(1982) present a nonparametric identification technique for multi-degree

models based on state variables. They applied the model to a steel

frame. Another structure nonparametric investigation was by Paez (1987)

and Hunter and Paez (1988). They demonstrated the computing of higher

order transfer functions for a cubic stiffness nonlinearity. Chouychai

and Vinh (1986) considered using impact testing on structures to

determine the Volterra series for analyzing nonlinear structures.

Nonparametric models require more input-output data to obtain a

model. Barker and Davy (1970), Barrett (1980), Fakhouri (1980) and

Lawrence (1981) presented methods to estimate the Volterra functional

series.

1.1.2. Force Identification Overview.

Force identification is the process of determining input excitations

using measured responses for a system. This definition encompasses

simple to complex systems. For a simple force transducer, a linear
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relationship is normally used for a correlation of the response to the

input force. For complex systems the relationship between the response

and the input may be ill-posed. One example is small perturbations in

the response measurements caused by large changes in the input forces.

Further, complex systems usually require more than one measured response

to identify the input forces.

This field of force identification has broad implications. In its

present stage of development it is not generalized, even though research

in the last ten years has increased. Some of the literature in this

field is mentioned below.

Stevens (1987) presented an overview for the force identification

problem for linear vibration. He discussed the major difficulty

associated with discrete and continuous systems.

Different approaches and problems are being studied. Doyle (1984a,

1984b) used strain response on a beam to determine the contact forces.

The formulation used Bernouilli-Euler beam theory. The formulation was

extended to include shear effects in the beam. This had little effect

on experimental test results. A follow-on paper by Doyle (1987) used a

formulation using phases of response to accurately locate in space and

time the origin of a dispersing pulse.

Simonian (1981a, 1981b) used a dynamic programming filter to predict

wind loads on a structure. The filter was used to identify the

structure and wind force parameters. The method used an optimal state

estimation. This was an attempt to apply nonlinear filtering methods to

large structural dynamic models. The results were satisfactory for the

range of frequencies considered, allowing the identification of variable

parameters so important for nonlinear systems. The biggest drawback for
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this method is the amount of calculation that is needed to obtain the

results.

Hillary and Ewins (1984) investigated, both analytically and

experimentally, the sinusoidal loads on a cantilever beam which was to

be extended to turbine blades. They worked in the frequency domain

using acceleration and stain gages on this beam. Their results showed

that the strain-related model was less ill-conditioned than the

acceleration model and that the predicted forces were less accurate at

the fundamental modes.

Fabunmi (1985, 1986, 1987) studied the effects of structural modes

for the determination of vibration force. Acceleration measurements

from cantilever and free-free beams were used to predict multi-input

forces. He found that, in areas of a fundamental mode of vibration,

only one excitation could be identified accurately. To help relieve

this problem, he suggested elimination of the degrees of freedom at

which the fundamental modes of vibration have large deflections.

Bateman and Soloman (1987) used a deconvolution technique in the

frequency domain for determining the input forces to a structure. This

technique was for earth penetrators. Laboratory experiments were

conducted with a bar 76.0 mm in diameter and 1.524 m long. The results

of the tests were reasonable but there was concern on how the frequency

response function calibrated at loads lower than actual field data (ten

times less) would affect predicted input forces. Also, the results

indicated that the placement of the accelerometers may greatly influence

the success of the technique.

Michaels and Pao (1985, 1986) investigated analytically and

experimentally an iterative deconvolution method to determine the
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orientation and time histories of applied forces to an elastic glass

plate. The procedure involves determining the coefficients of a linear

combination of Green's functions of the plate. Chung and Shase (1985)

furthered this study by introducing uniform loads and loads inside the

medium to the elastic plate.

Elliott, Juang, and Robinson (1988) used a singular valve

decomposition technique to reduce noise contaminating the input measured

strain matrix. This improved the ill-condiLioning of the inverse

problem due to this noise. The method was used to predict acoustic

forces -n a plate.

Gregory, et al. (1985, 1986) explored analytically and

experimentally the sum of weighted acceleration signals for free-free

beams and a weapon system that was instrumented. The results showed the

predicted force was captured for a band-limited range of input forces.

Hu (1980) used the equivalent linearization method in the frequency

domain to identify the input forces from known structural responses and

system parameters. He encountered a major difficulty, though, when he

introduced high levels of nonlinear displacement responses in his

analysis.

IbAfez (1974) applied inverse method to a prior model to determine

the input force that would best excite the modes of the structure. When

the structure parameters were identified, the new model was used to

identify the input forces.

Imregun and Ewins (1987) investigated determining equivalent forces

from structural responses. Equivalent forces allow complex excitation

of a structure to be replaced by simpler forces in dynamic testing.

Whitson (1984) and Jordan and Whitson (1984) presented a theory and
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an application of a Timoshenko transformation technique to identify

impact forces in a heat exchanger tubing system. The technique used

acceleration measurements at remote locations and required the distances

from the remote location to the location of the input force. This

distance could be estimated from the analysis of the dispersion in beam

acceleration.

Kreitinger and Wang (1988) applied the sum of the weighted

acceleration to nonlinear structures. They compared two structures, one

linear and one nonlinear, similar in design. The results showed the

method captured the basic nonlinear phenomenon but the amplitude showed

discrepancies.

Priddy, Gregory, and Coleman (1988) discussed strategic placement of

accelerometers to measure responses for determining input forces. They

showed that for linear systems the weighting coefficients for sum of the

weight acceleration method can be determined with the knowledge of the

mode shapes of the structure.

Smallwood and Gregory (1987) applied a constrained least squares

method for determining the coefficients for sum of the weighted

acceleration method.

Trujillo (1978) presented a state variable form of the differential

equations and solved for the input excitations. Two example problems,

heat conduction and structural dynamics, were presented using the

formulation developed.

Wang and Kreitinger (1987) presented a lump mass formulation of a

free-free beam to predict the input forces to the structure. The lump

mass was determined from a least square time domain method and a

frequency domain method. The predicted force and measured force showed
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very close correlation.

Yoshikawa and Sugie (1981) presented an inverse method to reproduce

the input to a system which can determine parts of the input.

Natke (1987) presented a frequency domain method for identifying the

input forces.

1.2. Objectives.

The first objective of this study is to explore the sum of weighted

acceleration technique, SWAT, in both the time and the frequency

domains. SWAT is an approach to identify the force input to a

structure. An additional objective is to validate SWAT as to whether

the approach can be used for nonlinear cases as well as linear cases.

The above objectives use experimental test data to verify the proposed

approach. A final objective iq to extend the approach to a more general

scheme which is applicable for more complex structures.
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CHAPTER 2.

FORCE IDENTIFICATION OF LUMPED MASS SYSTEMS

2.0. Model.

A force transducer is usually based on a linear relationship between

the forces applied and the output measured. One such transducer is a

force transducer which uses strain gages. The strain gage transducer is

calibrated by applying a known force and correlating this force with the

voltage output that is measured. The strain gage transducer is modeled

as a single degree of freedom system. The approach which is discussed

in this chapter and others to follow is a method which models a

structure system as a force transducer. This approach can be applied to

the simple transducer which was described above as well as complicated

multi-degree-of-freedom systems. This accomplishment allows the

determination of input forces to the structure. The common outputs

which are measured from structures are accelerations, velocities, and

displacements. The strain gage transducer indirectly measures the

displacement through measuring voltages, which are then correlated to

the force that is applied. The approach called sum of weighted

acceleration technique, SWAT, which is described in this report provides

the use of acceleration as the output measurements of the structure to

determine the force.

For real structures, one degree of freedom is not always the best

choice for modeling a structure as a force transducer. The research

conducted for this report explored force identification of multi-degree-

of-freedom systems. The first application of SWAT which is described in

this chapter was to linear lumped mass systems. The equations for a



k2 k

Figure 2.1 Free-Free Lumped Mass System.

free-free lump mass system shown in Figure 2.1 is represented in matrix

form by

E M] + [] {C + [ K] X }-{F (2(2 1)

where [M] is the mass matrix (diagonal for a lumped mass system), [C] is

the damping matrix, [K] is the stiffness matrix, (F) is the force vector

and (X), (X), (X) are the acceleration, velocity and displacement

vectors respectively.

For this system, the mass matrix is diagonal and the stiffness and

damping matrices are singular. When a matrix is singular, it has at

least one eigenvalue of zero and corresponding elgenvectors of the form
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B (2.2)

where B is an arbitrary constant. For the above mechanical system, this

represents rigid body motion. The transpose of the vector in Equation

(2.2) with B-i is

(1 1 1 ... 1). (2.3)

The multiplication of Equation (2.3) and Equation (2.1) yields the

results

m1x1 + m2x 2 + ... +mnxn - fl + f2 + ... +f n o (2.4)

where mi, i-1...n, are the lumped masses on the diagonal of [M], and f.

the point forces. The damping and the stiffness terms cancel out. Let

FR equal the resulting force on the system, then

F- f .. + m +mx +* +m

FR fl + f2 + "'' + fn 1X1 + M2x2 +  +M +mnn (2.5)

Note, this does not imply f - Ill f2 - m2x2' etc. Equation (2.5) can

be rewritten as

n

FR = mai (2.6)

i-i
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where n is the number of degrees-of-freedom, and a. - xi, i-l,...,n, the

.th
acceleration of the i mass, mi. When mi is known for a lumped mass

system, the force can be calculated with the measurements of the

acceleration. The next two sections discuss and describe time and

frequency domain approaches which take acceleration signals that are

multiplied by a coefficient to predict an external force that excites a

mechanical system. The technique (method) discussed here involves using

the least square system identification approach to determine the optimal

distribution factors associated with an equivalent mass at each

acceleration location and then verifying these predictions through

experiments. In order to assess this approach, several specimens with

different configurations were constructed. These specimens were tested

by applying random forces and measuring both the forces which were

applied and the acceleration at selected locations. The force exciting

the specimen was predicted by summing the coefficients, which were

determined by the time and frequency domain approaches, multiplied by

the coefficients' respective acceleration records, The force that was

predicted was compared with the force that was measured. The results of

this chapter demonstrate good experimental verification.

2.1 Time Domain Approach.

This chapter essentially describes two methods: time domain and

frequency domain. The first method, time domain, uses a linear

combination of time histories of accelerations and the external force

which was applied to determine the unknown parameters. The sum of the

products of mass times acceleration for each sub-section of a structure

system provides the prediction of the external force. This can be
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written as:

n

FR(t) - (wi ai(t)) (2.7)

i~ 1

where the wi was changed from mi in Equation (2.6) and are the unknown

coefficients to be determined. These coefficients are considered

effective weights associated with each acceleration measurement. This

equation is different from Equation (2.6) by changing the name of m. to

w.. In this model, w. may be negative for a system that is not truly

lumped. For a truly lumped mass system, the values of the weighting

factors can be readily estimated; however, for a system where the masses

are more uniformly distributed, good estimates for the effective weights

are not obvious. Consequently, the appropriate number and the location

of the measurements to be used for identifying the force that is applied

must be determined first. In general, the values of the effective

weights are frequency dependent (Smallwood and Gregory, 1987). From the

modal analysis viewpoint, the structure must be represented by at least

the number of vibration modes to be captured in measuring the external

forces plus two. The exception for SWAT is the case when gauges are

placed at the nodes of vibration for the highest vibration mode (Priddy,

et al. 1988). Then the structure can be represented by the number of

vibration modes plus one.

The time domain approach uses a least-square technique. From

system identification, which was discussed in chapter one, a parametric

model is chosen and the parameters are determined from the input/output

measurements. The model chosen for this force identification procedure
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is Equation (2.7) and the effective weights are the parameters to be

determined. Thus, if the system under consideration is linear and all

field measurements are noise free, Equation (2.7) can be assumed true.

However, some noise will inevitably be present; thus the data which are

measured will not satisfy Equation (2.7). Therefore, an error term

c(t), must be introduced to satisfy the equality and then Equation (2.7)

can be rewritten as

n

c(t) - FR(t) - (wi  ai(t)). (2.8)

i=l

The square error of Equation (2.8) is defined as follows:

T n
2 - f [ FR(t) (w. a (tM) ]dt (2.9)

0 i=l

The effective weights wi, then, are those values which satisfy the

sequence of the equations and n is the number of acceleration

measurements. To minimize the error, the partial derivative of f with

respect to w i is set equal to zero.

2
a 0, i - 1 ... n (2.10)

awi

Although many different solution schemes are available, the scheme used

for this study is shown by the discretization of the above equations and

solve Equation (2.10) for wi, i - 1, ... n. In this case there are more
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equations then the unknowns wi , i - 1, n. The solution of the set

of equation (matrix notation)

FR) A W ) (2.11)

is

W ) - ([ A ]T [ A )-[ A ]T{ FR) , (2.12)

where

{W -(w I  w 2  w w. wnT

1 W 2  3 n lxn'

A ]-(alk a2 k a 3k ank)mx4, k - , m,

SFR 1

FR

Rk. mxl

In this form, k represents each time increment where the data are taken.

For example, a lk - a1 (kAt) and mAt - T; thus, T is the total time

duration and At is the time increment. Once the effective weights w.

are determined, the same values can be used to determine the forces

exerted on the structure.

Additionally, the least square method chosen here was a recursive

e.timation (Hsia, 1977). This allowed a huge amount of data to be
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processed through the personal computer with limited memory. The

experimental data from the laboratory were digitized. The least square

algorithm is developed by introducing a subscript to (F R  and [A) for k

equations.

(FRk - [A]k (W) (2.13)

Also, denote ( W ) in Equation (2.12) as ( W )k

W ([A]T[A]k)- 1 [A]T{FR) (2.14)

thSuppose a new equation, the (k+l) h
, is obtained as

FR(k+l) - w1al 2 a 2 (w~a2(k --- + w n a (k+l) (2.15)

Then defining

T
a)k+ I  (a (k+l),a2 (k+l),... ,an(k+l)) (2.16)

yields

FR(k+l) -(a)T (+ W " (2.17)
R k+l k+l'

Now the system of k+l equations can be written as

(F R)k+ - [A)k+l ( W )k+l' (2.18)
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The new least-square estimator is

W ~kl-([A] T A] )1 [A] T (F)(.9
klk-i- k+l k+l R k+l (.9

Now let P(k) be given by

P(k) - ([A] T[A)' (2.20)

and therefore

P(k+l) - ([A] T [A] )1 (2.21)
k+1 k+l

Recall that if A, C, and A+BGD are nonsingular matrices, then

-l1 -1 -I -1 -1 -I -I

(A+ BCD) - A - A B(C + DA B) DA .(2.22)

Using the relationship of Equation (2.22) and rearranging Equation

(2.21)

P(k+l) - [P(k)- 14 (a) kl(a)T
kl k+l

- P(k)-P(k)(a) [1+(a) T P(k)ta) 1 (a) T Pk] (.3
k+l k+l k+l k+lPk] (.3

In view of Equation (2.19), it can be seen

kl) - P(k)([A ]T(F ) +(a) k~FR(k+l)) (2.24)

This algorithm was incorporated into a program shown in Appendix 2.
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With this algorithm and experimental data, the effective weights for a

structure can be determined. After the effective weights are

determined, SWAT will provide the means to predict future input forces

to a structure. Experimental data from mechanical systems were used in

this approach and are described and shown in Sections 2.3 and 2.4 and

Appendix 1.

2.2 Frequency Domain Approach.

A second technique explored to determine the effective weights was

in the frequency domain. This technique obtained the equations needed

to solve for the effective weights by applying physical constraints to

the effective weights and using statistical averaging of the force and

acceleration time histories in the frequency domain.

A first physical constraint is the sum of effective weights is equal

to the total mass, MT' of the structure.

n

MT - w i  (2.25)

i-i

A second physical constraint is the sum of the moment around the

centroid is equal to zero.

n

wd - 0 (2.26)

i-l

where di, i-l .... n, are the distances from the centroid to the

acceleration measuring point for the ith effective weight.

24



The other equations are obtained by averaging the data in the

frequency domain. First, the digitized experimental data is transformed

into the frequency domain with the discrete Fourier transform. Second,

the modulus of the force and accelerations are computed. At the modes

of vibration the values from the modulus are taken to form the

additional equations. This is represented by

JF( 1 ) I-slllal(wl) lwl+sl2la 2 (W!) w 2+'.'+snan (wl)W n

IF(w 2 )-s 2 1Ial(w 2 )I1 +s2 2 ja2 ( 2 )lw2+...+s2nIan(w 2 )lwn  (2.27)

IF(m) imla( 1a)Wl+sm2a 2 (Wm)lw 2+''+smn jan(wm)lwn

where is the modulus, wi, i=l... n, are the natural frequencies, and

sij are signs determined by the mode shapes of the structure. If a

structure does not significantly excite any of the modes of vibration,

then any effective weights that meet the physical constraints would

predict the input force accurately. But as the modes of vibrations are

excited, they must be represented by the effective weights. The number

of modes that can be represented is n-2 for a beam except when the

gauges are placed at the nodes of vibration of the highest mode of

vibration. In this case, one extra mode of vibration is captured. This

is the band-limited characteristic of this technique.

For an example, the use of a beam where only the first two modes of

vibration are excited would require four acceleration measurements on

the structure. The first equation is
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Figure 2.2. Frequency Domain Records of Accelerations and Force.
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4

w. - MT (2.28)
11

where MT is the total mass of the structure. The second equation is

4

widi - 0 (2.29)

i=l

where di, i - 1,... 4 are the distance from the centroid to the

placement of the acceleration gauge associated with wi. The moduli of

the acceleration records and the force record in the frequency domail

would be in the form shown in Figure 2.2. The third and fourth

equations would be obtained from these records as

IF(w 1)I-sllal(wl) lw+sl21a2 ('1 )1w2+sl31a3 ( 1 )1W3+S1 41a4 ('l)lw 4 (2.30a)

IF(o 2)l-s2 1al('2)IWl+s2 2Ia2 (w2)Iw 2+s 2 3 1a3 (U2)Iw3+s24 a44(c2)lw 4 (2.30b)

where IF(wi)I is the value of the modulus of the force at w " The

signs, sij, are determined by the mode shapes of the structure.

The above equations can be represented in matrix form as

1 1 1 1 m1  MT

d1 d2 d3  d4  m2  0

sjja l(w,)j s21a2(w1)1 s31a3(u)I s4Ia4((') 1 m3  1 F(wl)I

s51al( 2)1 s61a2(2)1 s71a3(cO2I s 8 a4 ( 2)1 m4  IF(w2)I
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Figure 2.3. Symmetric Lumped Mass Test Setup.
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Figure 2.4, Antisymmetric Lumped Mass Test Setup.
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2.3 Experimental Setup.

Once the approaches to determine the effective weights were

developed, several experiments were performed in the laboratory to

confirm their accuracy. A specimen made of steel with a size of 37" x

1" x 1/4" was chosen as the test structure with two different

configurations of mass, which were added to the beam, as shown in

Figures 2.3 and 2.4. Four rectangular masses were added along the

length of this beam to form a symmetric and an anti-symmetric

configuration. The beam was excited by a 2000-lb electrodynamic shaker

through a drive rod and force transducer connection. The force was

exerted to the test structure's center of mass. The specimen shown in

Figure 2.3 is symmetric about the centroid. The force is applied in the

center and measured with a force transducer. The acceleration is

measured at each of the masses. The natural frequencies were 22 liz and

169 Hz. The second setup was an antisymmetric specimen (see Figure

2.4). The masses were balanced to position the centroid in the center,

allowing the same beam for both setups. The first two natural

frequencies for this beam were 23 Hz and 135 Hz.

Response data were recorded and digitized through an ISAAC-2000 data

acquisition system with a 2000 data point sampling rate per second per

channel. Data reduction was performed by using an IBM-XT and Micro-VAX

II computers. Also, the identification algorithms to determine the

effective weights were run on the IBM-XT and Micro-Vax II computers.

The following section presents results of the two examples.
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Figure 2.5. Comparison of Forces for Test Run 2 (Symmetric
Test Specimen).
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Figure 2.6. Comparison of Forces for Test Run 4 (Symmetric
Test Specimen).
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Figure 2.7. Comparison of Forces for Test Run 7 (Symmetric

Test Specimen).

2.4 Results.

The first configuration which is shown in Figure 2.3 had four equal

masses distributed along the beam. The test specimen was symmetric.

Seven test runs, with random force applied at the centroid, were

conducted to investigate how the bandwidth of the excitation would

affect the results. The first two vibration modes were at 22 11z and 169

liz. The test runs consist of random excitation with bandwidth of

frequency of the following:

2 test runs at 0-50 Hz

2 test runs at 110-200 Hz

3 test runs at 0-200 Hz

The bandwidth is the range of frequency where the input force shows
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Figure 2.8. Comparison of Forces for Test Run 2 (Antisymmetric

Test Specimen).
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Figure 2.9. Comparison of Forces for Test Run 4 (Antisymmetric

Test Specimen).
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Figure 2.10. Comparison of Forces for Test Run 7 (Antisymmetric
Test Specimen).

power in the frequency domain. The bandwidths were chosen to include

specific vibration modes. The 0-50 Hz bandwidth included only the first

mode, the 110-200 Hz bandwidth included only the second mode, and the

0-200 Hz bandwidth included both of the vibration modes. A total of

four measurements at each lumped mass location were taken. The force

was applied at the center, which was clamped for this symmetric

specimen. Therefore, the acceleration records opposite the center were

equal. For this test specimen, n of Equation (2.7) was equal to four.

The experimental data are shown in Appendix 1. The effective weights

were determined using both the time and frequency domain approaches

which were described in Sections 2.1 and 2.2. Figure 2.5 shows the
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force that was measured and the force that was predicted using Equation

(2.7) with effective weights. This figure is test run 2. Figure 2.6

compares the force for test run 4 which used a 110-200 Hz bandwidth of

force excitation. Figure 2.7 compares the two forces for test run 7

which used a 0-200 Hz bandwidth of force excitation.

The second configuration (see Figure 2.4) was excited with random

vibration with the following test runs:

2 test runs at 0-50 Hz

2 test runs at 110-200 Hz

3 test runs at 0-200 lz

Again, the bandwidths were chosen to include specific vibration modes.

The 0-50 Hz bandwidth included only the first mode of vibration,

110-200 Hz bandwidth included only the second mode of vibration, and the

0-200 Hz bandwidth included both of the vibration modes. Since this was

an antisymmetric specimen, all four acceleration measurements were used

to determine the effective weights. Figure 2.8 compares the measured

force to the pedicted force using Equation (2.7) with effective weights.

Figure 2.9 compares the force for test run 4. Finally, Figure 2.10

compares the forces for test run 7.
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CHAPTER 3.

FORCE IDENTIFICATION OF CONTINUOUS SYSTEMS

3.0. Model.

From the previous chapter's results, the sum of the weighted

acceleration technique, SWAT, can adequately predict external forces fo:

lumped mass structures. The prediction of the input forces used the

following equation

n

F R, a. (3.1)RL

i=l

where the effective weights were determined using mathematical

techniques with experimental data. This chapter demonstrates and

discusses applying SWAT to continuous structures. Experimental

verification compares the predicted force which was determined by SWAT

to the force which was measured for a structure.

3.1 Experimental Setup

The structure selected for a continuous system was a beam which was

made of steel. The beam's dimensions were .5" X 1" X 80.75". The beam

was suspended with rubber bands to simulate a free-free beam. A total

of five accelerometers were mounted along the beam as shown in Figure

3.1. Both random force loadings and impact loadings were applied. The

random excitation produced data to determine the effective weights.

Comparisons of forces for both types of loadings were made of the

predicted and measured forces.

The modulus of elasticity for steel is 29 X 106 psi. The mass per



All Olmeneloras In Inches.
Me3 - 11.38 lb.
0- Location of on accelerometer.

80.75
I U 0 7 = (

t l.77 18.01 / 18.01 110.77 7
6.90

Figure 3.1. Free-Free Beam Configuration.

unit length of this beam is 0.14 lb/in. The area moment of inertia of
-2 .4

the beam is I - 1.04 X 10 in . From these values the first three

theoretical natural frequencies are approximately:

Natural Frequencies (Hertz)

1 16

2 43

3 85

The effective weights were determined from the time and frequency

approaches discussed in Chapter 2 using a random input. Two tests with

random excitation inputs were recorded. The first data were used to

determine the effective weights for the beam. A comparison of forces

which were predicted using SWAT and measured are shown in the results.
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3.2. Results.

The first test's acceleration records for the continuous beam are

shown in Figures 3.2 through 3.11. The force loadings were applied at

the center of the beam. The first test loading's time history and

modulus is shown in Figures 3.12 and 3.13, respectively.

The first test's acceleration and force data were used to determine

the effective weights. The effective weights that were determined are

shown in Table 3.1.

Table 3.1. Effective Weights for a Continuous Beam.

Determined Determined
From Time Domain From Frequency Domain
Approach Approach

w 2.31 2.40

w2  2.60 2.55

w 3  1.49 1.60

w4  2.86 2.41

w5  2.45 2.50

The comparison of the force measured and predicted for a random

excitation is shown in Figure 3.14. The force which was predicted was

calculated using SWAT with the effective weights determined by the time

domain approach. Figure 3.15 compares the force measured to the force

which was calculated using SWAT, with the effective weights determined

by the frequency domain approach. Finally, the force for an impact

loading is compared with the force determined using the effective

weights in Figure 3.16.
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Figure 3.2. Acceleration #1 Record for Continuous Beam.
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Figure 3.3. Modulus of Acceleration #1 Record for Continuous Beam.
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Figure 3.4. Acceleration #2 Record for Continuous Beam.
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Figure 3.5. Modulus of Acceleration #2 Record for Contintious Beam.
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Figure 3.6. Acceleration #3 Record for Continuous Beam.

5-

4-

0 2-

0 -

0 25 50 75 100 125 150
Frequency (Hertz)

Figure 3.7. Modulus of Acceleration #3 Record for continuous Beam.
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Figure 3.8. Acceleration #4 Record for Continuous Beam.
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Figure 3.9. Modulus of Acceleration #4 Record for Continuous Beam.
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Figure 3.10. Acceleration #5 Record for Continuous Beam.
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Figure 3.11. Modulus of Acceleration #5 Record for Continuous Beam.
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Figure 3.14. Random Excitation Loading Comparison for a Continuous
Beam. (Time Domain Approach.)
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Figure 3.15. Random Excitation Loading Comparison for a Continuous
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CHAPTER 4.

FORCE IDENTIFICATION OF NONLINEAR SYSTEMS

4.0. Nonlinear Model.

All structures have some degree of nonlinearity. A structure can be

modeled by a linear model; but, when a more exact description of the

structure is needed, a nonlinear model may be needed. This chapter

describes the application of the sum of the weighted acceleration

technique which was used in previous chapters for linear specimens.

The force-mapping technique allows the non-linearity or linearity to

be shown in a three-dimensional graph. The determination of the

nonlinearity for a test specimen with a nonlinear joint was explored

using the force-mapping technique. The three-dimensional plot of the

displacement, velocity and force is shown in this chapter. The same

type of joint was added to a second test specimen and used with the sum

of the weighted acceleration method. The force which was measured is

compared with the force that was predicted.

4.1. Force Mapping.

When nonlinear structures are studied for dynamic response, it is

important for the engineer to know what types of nonlinearity the

structure has. The force-mapping technique described by Crawley and

O'Donnel (1986a) is a vital method to determine the type of nonlinearity

exhibited by a structure. The method involves graphing the force versus

velocity and displacement into a three-dimensional plot.

The graph is a picture of the state of a joint or the system betweerh

selected coordinates. The dynamics of a system can be represented by a



second order equation of motion

Mx + D(x,x)x + K(x,x)x - F(t) (4.1)

where the generalized damping, D, and stiffness, K, can vary as a

function of the state. Let

F1 (x,x) - F(t) - Mx = B(x,x)x + K(x,x)x (4.2)

where F represents the force transmitted by the joint entirely as a
7

function of the instantaneous state of the system.

2..0

Figure 4.1. Force-MAp for a Linear System (K and D are Constant%).
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Equation (4.2) is the mathematical representation for the

forcing-mapping technique when F is plotted versus displacement and

velocity. If the system is linear, that is D(x,x) and K(xx) are

constant, the plot of F (x,x) would be an inclined plane of the type

shown in Figure 4.1. The slope of F and velocity would be D and the
T

slope of F and displacement would be K. Deviation from the linear plot
T

is an indication of nonlinearity for a system. The shape of F showsr

the type of nonlinearity.

F can be composed of superposition of the linear and nonlinear
T

combination for the plot. For an example (Crawley, et al. 1986b)

F C+K + DX + .. + K +
n + D x +r1 1n n

K DB + DDB + FFsign(x) + gjxj sign(x) (4.3)

with

kDB(x-xDB) d(DBX) XDB :5 x

K DB D - 0 XDB : x : XDB
kDB(X+xDB) DB DB DB

where the first three terms represent a constant preload, a linear

spring and a linear damper. The next two terms represent higher order

springs and dampers, the sixth and seventh terms dead-band springs and

dampers, the eighth classical Coulomb friction, and the last, classical

material hysteresis dampithg and displacement dependent friction.

A system with a cubic stiffness which is represented by
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SJ.I

00

Figure 4.2. Force Map for Cubic Stiffness.

Mx + Dx + K Ix + K 2 ~)(4.4)

is mapped in Figure 4.2. A second system with a cubic damping which is

represented by

Mx + D + D x3 + Kx = F(t) (4.5)

is mapped in Figure 4.3. A third system with both r'ubic s~tiffness 111cl

camping is represented by
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and is mapped in Figure 4.4.

When implementing this method, it is desirable to be able to span

the range of the velocity and displacement plane so the measurements are

dense enough to plot F . One procedure is to use a modulated sinusoidal

wave that is monotonically increased in amplitude from zero to some

final value.

Crawley and O'Donnell (1986b) demonstrated the technique by computer
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Figure 4.4. Force Map with Both Cubic Damping and Stiffness.

simulated spring mass damped system including a cubic spring, and

experimentally for a pinned clevis joint and for a pinned clevis joint

with sleeve. The acceleration, displacement and force were measured in

their experimental tests. From the acceleration and displacement the

velocity was obtained.

To verify and work out the details of this method, an experiment

with a linear and a nonlinear test were conducted. The linear

experiment setup is shown in Figure 4.5. The specimen was a It X 1/4" X

48" steel bar. It was attached to a large mass (assumed fixed in space)
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00

Figure 4.7. F versus Velocity and Displacement.

at one end and a dynamic shaker at the other end. The force applied was

a modulating 30-Hz sinusoidal wave increasing from 0 to 5 seconds and

then decreasing from 5 to 10 seconds at a linear rate shown in Figure

4.6. The results were plotted in a three-dimensional plot shown in

Figure 4.7.

The results were comparable with Crawley and O'Donnell (1986b), but

had the added feature of double integration of the acceleration to

obtain the velocity and displacement.

A second experiment used a nonlinear joint between the fixed mass
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and the end that was excited as shown in Figure 4.8 The results of this

test are shown in Figure 4.9.

The critical step for the force mapping technique is to obtain the

velocity, displacement, and force records. One of the most common

measurements for a dynamic structure is acceleration. If true velocity

and displacement could be acquired from the acceleration, it would

facilitate the force mapping technique. The problems and method of

double integration will be discussed in the next section.

4.2 Displacement and Velocity from Acceleration Data

Since the acceleration is commonly the only dynamic measurement

taken from a structure, it is desirable to obtain displacement and

velocity from the acceleration record. When double integrating the

acceleration data, the displacement and velocity produced are not 100

percent accurate. Double integrating of acceleration records is an arr

that can be learned only by practice. Different methods create

different results. Trujillo and Carter (1982) proposed a minimization

problem to solve for the velocity and displacement. The method has

advantages if all three measurements are taken; it can correct all three

to each other by minimizing the error. This method can be used with a

minimum of information of the acceleration record, initial and final

velocity and displacement values. The fewer the data, the more

unrealistic the results could become. The general error equation is

n * (a) ~-.*2 *2

E - h V a i-Vi + X2 (didi)
2

i=l

iA 3 v2 + A (ddN*2 + A eN2 (4.7)3 N 4 dNN A5eN
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where

a. - Estimated Acceleration1

a. - Measured Acceleration1

v. - Estimated Velocity
1

V. - Measured Velocity1

d. - Estimated Displacement1

d. - Measured Displacement1

A - Weight Factors

e N  - Error average

The weight factors were investigated by Trujillo and Carter (1982).

They showed that when the terminal velocity was a small value,

increasing the weight factors had negligible effects. The results for

minimum data requirements, that is acceleration, initial and final

velocity and displacement, have not proven effective in the tests of

force mapping because the data are affected by a low frequency noise

that obscures the displacement plot.

A second procedure by Stephens and Yao (1985) showed a comprehensive

method to double integrate the acceleration. The procedure involves an

intuitive feeling of the results. It considers filtering out high and

low frequencies of the acceleration that are not supposed to be present.

These frequencies are considered to be noise. Second, the acceleration

record must be processed to eliminate spikes and linear trends if

present. Considering these different problems of double integration of

acceleration, an engineer can obtain reasonable results. The engineer's

intuition or data processing is used to determine noise problems in the

original acceleration record. For example, the problem in the force

mapping experimentation was that the acceleration record contained
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linear trends and low frequency noise. Low frequency noise has a

devastating effect on the displacement. The main problem of eliminating

noise is that by eliminating the noise, the desired record can be

distorted. It is not uncommon to have 60-Hz noise problems because most

equipment runs off a 60-Hz cycle AC current. It is hard to filter off

the 60-Hz noise without interfering with frequencies near 60 Hz.

Therefore one technique is not a solution to all noise problems.

4.3. Nonlinear Test Setup.

The previous chapters showed that SWAT can adequately predict

external forces in linear elastic structures. To verify the SWAT for

nonlinear structures, three different test specimens were constructed

and randomly excited by an electrodynamic shaker through a drive rod and

force transducer connection.

The first two specimens were similar in detail except that a

nonlinear joint was added to one. This was to compare a linear and a

nonlinear system. (See Figures 4.10 and 4.11, respectively.)

The dimensions for test specimen #1 were

L - 21.5 inches (546.1 mm)

m - m3 = 2.34 lb (1.04 kg)

m 2 - 6.52 lb (2.90 kg)

tbar - 3.06 lb (1.39 kg)

M - 14.26 lb (6.35 kg).
T
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The dimensions for test specimen #2 were

L - 21.5 inches (546.1 mm)

D - 9.5 inches (241.30 mm)

m - m 3 - 2.34 lb (1.04 kg)

m2 - 6.52 lb (2.90 kg)

mbar - 3.39 lb (1.54 kg)

MT = 14.57 lb (6.61 kg).

Each of these two specimens was excited for two test runs with an

input signal of a bandwidth of 0-20 Hz. Measurements were recorded for

half of the structure due to symmetry. The first test run for each of

these two specimens was the same input excitation. The measured

accelerations and forces from the first run was used to determine the

effective weights. In the second test run the effective weights

multiplied by their corresponding accelerations were then compared with

the measured force.

Finally, a more complex nonlinear structure was used to verity

results. The third test specimen, shown in Figure 4.12, used the

acceleration measurements at the four lumped masses to determine four

effective weights.

4.4. Nonlinear Test Results.

The results from the first two test specimens are described in

detail. Test specimen #1 was considered linear. Figures 4.13 through

4.18 show the raw measurements with their respective transform. The

equations formed were
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1.0 1.0 1.0 w 014.26
-21.5 0.0 21.5 w 0.0 (4.8)
8.89 .48 8.8 w 58.73

The third equation was determined from the modulus values. Since

wI - 3 due to symmetry, Equation (4.8) is rearranged as

1.0 1.48] 58.73 (4.9)

Solving Equation (4.9) yields

2w - 6.17 lb (2.80 kg) w - 3.09 lb (1.40 kg)

w 2 - 8.09 lb (3.67 kg)

A comparison of the predicted and measured forces for the second

test run is shown in Figure 4.19. The two forces are practically

identical.

As shown in Figures 4.20 through 4.27, the test for specimen #2 has

similar results. Taking the values from the data and applying the two

constraint equations, the reduced equations are

10 108 2w 14.57(4.10
8.51 .48 w5 (4.10)

Solving Equation (4.10) yields

2w - 1.44 lb (0.65 kg) w1 - 0.72 lb (0.33 kg)

w- 13.13 lb (5.96 kg)
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The predicted force using these effective weights for the second

test run was compared wich the measured force shown in Figure 4.28. The

comparison shows good correlation between the waveforms.

For test specimen #3, the same technique was applied to determine

the effective weights. The four effective weights calculated were

w I 1 4.02 lb (1.83 kg)

w = 5.10 lb (2.32 kg)

w 3 -6.58 lb (2.99 kg)

w - 5.06 lb (2.30 kg)

This specimen was more complex and excited with a wider and stronger

excitation. However, even with these changed parameters, the waveform

was captured with the effective weights multiplied by their associated

accelerations. Figure 4.29 shows the predicted and measured force for

an independent test run.

L" L

F l iM m2 , m3

.1" X V" Steel Bar

F(t)

Figure 4.10. Test Specimen Number 1.
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Figure 4.11. Test Specimen Number 2.
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Figure 4.12. Test Specimen Number 3.
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Figure 4.14. Kodulus of Acceleration at the End,
a ,for Test Specimen #1, Run #1.
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Figure 4.15. Acceleration at the Center, a2(t), for
Test Specimen #1, Run #1 .
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Figure 4.16. Modulus of Acceleration at the Center,
a2(t), for Test Specimen #1, Run #1.
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Figure 4.17. Measured Force for Test Specimen #1,
Run #1.
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Figure 4.18. Modulus ot Force for Test
Spec imen #1 , Run #1.

64



90.0 Measured
Predicted

$L4

-90.0

0.0 Time (Seconds) 3.0

Figure 4.19. Predicted arnd Measured Force for Test
Specimen #1, Run #2.
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Figure 4.20. Acceleration at the End, a (t), for
Test Specimen #2, Run #1.
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Figure 4.21. Modulus of Acceleration at the End,
al(t) , for Test Specimen #2, Run #1.
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Figure 4.22. Acceleration at the Joint, a2

for test specimen #2, Run #1.
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Figure 4.23. Modulus of Acceleration at the Joint,

a for Test Specimen #2, Run #i
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Figure 4.24. Acceleration at the Center, a3(t), for
Test Specimen #2, Run #1.
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Figure 4.25. Modulus of Acceleration at the Center,

a tfor Test Specimen #2, Run #1.
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Figure 4.26. Measured Force for Test Specimen #2,
Run #1.
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Figure 4.27. Modulus of Force for Test
Specimen #2, Run #1.
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Figure 4.28. Predicted and Measured Force for Test
Specimen #2, Run #2.
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Figure 4.29. Predicted and Measured Force for Test
Specimen #3.
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CHAPTER 5.

ANALYTICAL APPROACHES

5.0 Introduction.

This chapter further expands on the idea of sum of weighted

acceleration technique, SWAT, by presenting alternative formulations for

the determination of the effective weights. For models of linear

systems, the weighting coefficients or effective weights can be

determine4 analytically with knowledge of the mode shapes of the

structure rather than experimentally determining the weights. These

approaches allow estimation of effective weights without experimental

data, which is valuable for large complex structures where known forces

can not be easily applied. These mathematical formulations provide

advantages for determining the effective weights analytically rather

than through the use of the known forces on the actual or prototypical

structure. Results indicate the procedures have a wide range of

applicability which is of considerable importance for large

niulti-degree-of-freedom structures.

The first methods used in the previous chapters to obtain w i were

experimental in that known forces were applied to specific structures

and the w i were obtained by minimizing the difference (in some norm)

between the predicted and known forcing functions. Then the actual

situation in which the forcing function is not known could be predicted

using Equation 5.1.

n

FR - wi a. (5.1)

i-I



Since many structures are too complicated to perform the tests

necessary to experimentally determine the weighting coefficients,

alternative analytical approaches could prove to be valuable for

engineering applications. The next sections provide derivations and

preliminary evaluations of schemes which appear to be useful.

5.1 An Analytical Method Based on Mode Shapes.

A method described by Priddy et al. (1988) uses mode shapes in

analytical expressions for determining the effective weights. Since the

finite element procedure can be used to obtain mode shapes, this

procedure can be considered quite general. Therefore, for the sake of

completeness, a derivation is given which is different from that given

by Priddy et al. (1988) and which may provide additional insight into

the method.

,
Suppose an elastic body is subjected to a surface traction t and a

body force b of the following type:

t = F(t) X (rs) (5.2a)

b = F(t) x(r) (5.2b)

in which x(r) and x (r s) are known functions, defined over the volume

and surface, respectively. In other words, the forcing function is

assumed to be separable with the spatial distribution known and one

unknown time dependent coefficient described by the vector F. The

position vector r assumes the value rs on the surface. Since the method

of weighted accelerations is applicable only if there are no
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displacement prescribed boundary conditions, X is defined (perhaps

zero) over the complete surface.

If p denotes the mass density, u the displacement vector and a the

symmetric Cauchy stress tensor, then the equation of motion is

Pu- V-a + b (5.3)

in which V.( ) denotes the divergence operator and a dot denotes a

derivative with respect to the time. For a linearly elastic body, the

constitutive equation is

a - E : e (5.4)

in which E is the elasticity tensor and e the strain tensor. For small

deformations, the strain is the symmetric part of the displacement

gradient:

e - (V u)symm (5.5)

A modal solution to Equation (5.3) is given by

u - ??i(t) pi(r) (5.6)

i-i1

in which pi denote the eigenfunctions. The first two eigenfunctions

represetiL rigid body translation
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c c c- I (5.7)

in which c is independent of r, and rigid body rotation

2 _R (r - rc) (5.8)

The position vector to the center of mass is denoted by r and R is a

rotation tensor, also independent of r, and orthogonal:

T
R . R= I (5.9)

in which the superscript T denotes the transpose and I the identity

tensor. The functions pi with i > 3 represent deformation modes of

vibration associated with natural frequencies 
w..

The first step in the procedure of Priddy et al. (1988) is to note

that the total mass of the body is given by

M - J p dv (5.10)

D

in which D denotes the domain of volume integration and dv a volume

element. It is also known that the modes are orthogonal to each other.

In particular, consider the orthogonality of the second mode to the

first one, i.e.,

Sc 2dv - 0(5.11)

D
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Since c and R are independent of r, and because the resulting expression

must hold for arbitrary values of c and R, the result of substituting

Equation (5.8) in Equation (5.11) is that

I (r - r ) d 0 (5.12)
D

which is, of course, another identity.

The orthogonality of c with the other modes yields

J c idv - 0 1 - 3,4,... (5.13)

D

but since c is constant and arbitrary it follows that

f V dv - 0 i - 3,4,... (5.14)
D

Equations (5.10), (5.12) and (5.14) prove to be the key ones for

obtaining the weighting coefficients.

If these integrals are computed using numerical quadrature, then a

typical integral of a function G(r) is approximated as follows:

n

f G(r) dv - wi G(ri) (5.15)

D i-i

in which ri is the position vector of the integration point and w. is
1

the weight. The number of integration points is denoted by n. Numerous

75



schemes exist (e.g., Gaussian quadrature) for which specific values are

assigned to w. and rules are given for choosing r.. However, here the

w. 's are left unassigned for the moment, and the points r. are defined
1 1

to be those points where accelerometers are placed. Then the result of

utilizing Equation (5.15) in Equations (5.10), (5.12) and (5.14) is the

following:

n

p w= M

j=1

n

(r. r c)wj 0 (5.16)

j=l

n

) iJ wj - 0 i - 3,4,. o .

j=1

in which

Vij - qi (r ) (5.17)

Now Equation (5.16) is used as the governing set of equations for

obtaining the weighting coefficients w. . In three dimensions, only n-6J

deformable modes can be accommodated with the scheme.

To derive the equation that is actually used to obtain the resulant

force F(t), integrate each term in Equation (5.3) over the domain:
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p u dv - f V a dv + J b dv (5.18)

D D D

The Gauss-Green theorem yields

f V -a dv - f q -a ds = f t ds (5.19)

D aD 8D

in which aD denotes the surface and ds an area element. Then the use of

Equations (5.2a) and (5.2b) results in

p u dv - F(t) v (5.20)

D

in which

- x dv + J xS ds (5.21)

D aD

is a constant vector which is presumably known. Suppose the scale

factor is absorbed in F so that

- 1 (5.22)

If numerical quadrature is used, then Equation (5.20) becomes

n

P u i w i - F(t) (5.23)

i-7
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which is the general from of the method of weighted accelerations.

As reported by Priddy et al. (1988), very good results have been

obtained using this approach to obtain the weighting coefficients.

However, it seems that other orthogonality relations may serve equally

well, and there may even be a possibility that alternative schemes may

be viable in which it is not necessary to obtain the mode shapes at all.

The next section indicates how the finite element approach might be

applied directly.

5.2 Weighted Residuals and thn Finite Elemeiat HeLhod.

The finite element method can be considered as a systematic

procedure for developing compact nodal basis functions for use in a weak

formulation such as the method of weighted residuals. To illustrate

that various analytical approaches can be used to obtain suitable

factors for use in the procedure involving the sum of weighted

accelerations, the more general approach involving weak formulations is

given in this section. Then the specialization to finite elements is

made.

To illustrate the concepts in as simple a manner as possible,

consider the one-dimensional model problem of motion in a bar of length,

L. Since the method of weighted accelerations applies only to

unsupported bodies, the boundaries defined by x=O and x=L are free.

Acceleration time histories ai(t) are presumed to be available from

accelerometers placed at the n points xi, i-l... n. Consider a forcing

function that is separable in space and time
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L

f(x,t) - F(t) X(x) J X(x)dx - 1 (5.24)

0

in which the spatial distribution, X(x), is assumed known but the

temporal part, F(t), is unknown. The normalization on X is done for

future convenience. The procedure states that with a suitable choice of

scalar weight variables, wi, the force is given by the formula

n

F(t) - wiai(t) (5.25)

i=l

Normally the weight variables are obtained by performing an experiment

in which the forcing function is known and then adjusting the variables

by the method of least squares so that the function F(t) is as close as

possible to the measured function. Then the weight variables are used

in the actual problem in which the forcing function is desired but

unknown.

The governing differential equation for an elastic bar with unit

cross-sectional area is

(ku, x)x + F(t)X(x) - p u 0 < x < L (5.26)

in which k is the elastic stiffness.

Label the points at which the accelerometers are placed, xj, as

nodes. Introduce nodal basis functions Ni(x) which are defined to have

the value one at associated nodes and zero at all other nodes. Lagrange

polynomials are examples of such basis functions which are comple-
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polynomials and, hence, will automatically represent rigid body modes in

the following representation for u:

n

u - ui(t) Ni(x) (5.27)

i-l

Let q(x) denote a weight function with continuity of at least C . A

weak form of the equation of motion is obtained by multiplying each term

in Equation (5.26) by q and integrating over the domain. With the use

of Equation (5.27), an integration by parts, and the use of the free end

boundary conditions, the result is:

n L n L

f J pq(x)Ni(x)dx 'i + f J kq, XNi,dX u-

i-lO i-lO
L

F(t) J q(x)x(x)dx (5.28)

0

If a representation similar to Equation (5.27) is used for q:

n

q - qi Ni(x) (5.29)

i-i

then with q, considered to be arbitrary, Equation (5.28) becomes

[M] (u) + [K] (u) - F(t) (f) (5.30)

in which standard matrix notation has been used. The column vector (u)
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consists of the time dependent components u i(t) while components of the

remaining matrices are:

L L

Kij - J k N.,x Nx dx Mij f p N Ni dx

0 0
L

fi f X Nidx (5.31)

0

Let (R) denote the rigid body mode. Since the associated stiffness

eigenvalue is zero, it follows that

<R> [K] - <0> <R> - < iI...I> (5.32)

in which <R> is the transpose of (R). Also, because the basis functions

must represent complete polynomials up to the first order for

convergence to be assured, these basis functions will automatically

satisfy the relation

n

Ni(x) - 1 (5.33)

With the use of Equation (5.33) and the normalizing result of Equation

(5.24), it follows that

<R> (f) = 1 (5.34)

Thus the inner product of <R> with each term in Equation (5.30) yields
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<W> (u) - F(t) (5.35)

where

<W> - <R> [M] (5.36)

and Equation (5.35) is identical in form to Equation (5.25) which is the

method of weighted accelerations.

Under rigid body motion

(u) (R) (5.37)c

C

in which u denotes the rigid body acceleration which is also the

acceleration of the center of mass. Because of the use of nodal basis

functions, it can be shown that

<R> [M] IR) - M (5.38)

where M is the total mass of the body. Then for rigid body motion

Equation (5.35) reduces to

P(t) - M uc (5.39)

as it should.

The result of the formulation is that once nodal basis functions are

chosen, the mass matrix can be constructed from Equation (5.31) and the

weighting parameters from Equation (5.36). In particular, for the first
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node, the result is

L

W f f p NI [NI + N2 + ... ]dx (5.40)

0

The use of Equation (5.33) yields

L

WI  f p N dx (5.41)

0

with a similar expression for each of the other weighting parameters.

With reference to Figure 5.1a which represents a bar on which three

accelerometers are placed, Lagrange polynomials (See Figure 5.1b)

represent one possible choice for nodal basis functions:

(x x2)(x - X3) (x - Xl)(X - X3)
N2 - N -

(x1 - x2 )(xI - x3) (x2  X 1)(X2 - x3)

(x - Xl)(x - x2)

N - (5.42)
3 (x3 - X)(X 3 - x2)

from which weight factors can be determined.

Alternatively, the points x., x2, and x3 can be used to define the

two elements shown in Figure 5.lc. Finite elements also define nodal

basis functions, which are shown in Figure 5.1c, for elements that

provide C continuity. The effect of using basis functions based on

finite elements is that one-half the mass of each element is assigned to
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each of the two nodes used to define the element. The net result is a

very intuitive procedure for assigning weights to each node. The

problem is that the hash-marked areas at the ends are not included

within the elements. A possible approach is to lump the mass

represented by the hash-marked area with the adjacent node.

An engineering rule of thumb in finite element analysis is that 2m

nodes are required to accurately represent m mode shapes. It is to be

expected that lumping masses based directly on finite elements rather

than on mode shapes can only provide accurate predictions for a limited

number of frequency components in the result for the forcing function.

Examples given in a later section tend to support this hypothesis.

5.3 Application of the Finite Element Method to Beams.

For elementary Euler-Bernouilli beam theory, an element can be

defined in which two degrees of freedom are associated with each node.

If the first degree of freedom corresponds to translation and the second

to rotation, then the consistent element mass matrix is

156 22h 54 -13h

Me 22h 4h2  13h -3h2[M] - (5.43)
[ 54 13h 156 -22h

-13h -3h2  -22h 4h2

in which Me denotes the element, and h the length. Now both rigid body

translation and rotation are possible. However, normally transverse

forces are of primary interest, rather than applied moments, so the

appropriate rigid body mode to use in the matrix equation of motion is

84



0- Aooae~eronietr Ioocaiorn

L

0 0 0

(a) Bar with Three Accelerometers.

(b) Sketch of Lagrange Polynomials as Nodal Basis Functions.

O - Element Number

0(c) Nodal Basis Functions for C Elements.

Figure 5.1. Nodal Basis Functions for a Bar.
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that of rigid body translation in which results similar to those of the

previous section continue to hold. In particular, the vector defining

rigid body translation for an element is

<R> - < 1,0,1,0 > (5.44)

and the element weight factors become

Me
<R> [M] - 4 < 210, 35h, 210, -35h > (5.45)

The translational terms are the first and third components in this

vector, which indicates that the result is a simple assignment of

one-half the mass of an element to each translational degree of freedom.

Again, any excess mass at the ends of the bean: not defined within an

element would have to be lumped at the appropriate nodes. Similar

results can be derived for elements used to model other structural

members. Sample results for beams and plates are given in the next

section.

5.4 Experimental Results.

Effective weights, determined by the mode shape and finite element

approaches discussed in the previous sections, for a free-free beam of

two different acceleration configurations were used to predict input

forces. These forces of random and impact loadings were compared by

plots with the measured forces. A third case used a free-free plate

where rhe effective weights were determined by the finite element
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approach.

The first case is that of a free-free steel beam with the five

accelerometers placed at the nodes if the fourth vibrational mode (See

Figure 5.2). This is considered to be a strategic placement of the

gauges (Priddy et al. (1988)). From Equations (5.16) two of the five

equations for this setup come from rigid body translation and rotation.

The other three equations involve the first three vibrational modes.

This forms the set of equations

1.0 1.0 1.0 1.0 1.0 w1  11.361

34.48 18.01 0.0 18.01 -34.48 w2  0.0

1.323 -0.392 -1.216 0.392 1.323 w3  - 0.0 (5.46)

0.861 -1.282 0.0 1.282 -0.861 w4  0.0

0.423 -1.043 1.422 1.043 0.423 w5  0.0

where 11.36 lb is the mass of the beam. The effective weights fromm

Equations (5.46) are tabulated in Table I as effective weights

determined from the mode shapes.

A second set of effective weights for this beam setup were

determined from the finite element approach (See Table 5.1). For this

beam, case 1, the two different sets of effective weights were very

close. The difference between random and impact loadings determined

from both sets of effective weights to the measured forces was small

(See Figures 5.3, 5.4, 5.5, and 5.6).

The second case is for the same beam and same number of

accelerometers with the gauges moved to a reasonable location, but where

the modal shape approach yielded a negative effective weight (See Figurv
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Table 5.1. Effective Weigihs for Each Case.

Case Effective weights determined Eflective weights determined

Number from mode shapes. from finite elements.

Case 1 w1 = w5 = 1.91 lb wI = w5 - 1.99 lb

Free-Free Beam W 2 - W4 - 2.50 lb w 2  = w4 = 2.43 lb

(See Figure 5.2) w3 = 2.54 lb w3 - 2.53 lb

Case 2 w I - w 5 - 4.34 lb w I = w 5  2.83 lb

Free-Free Beam w 2 = w 4 = -1.46 lb w 2 - w = 1.93 lb

(See Figure 5.7) w3 - 5.60 lb w 3  1.84 lb

Case 3 w1 =w 2 - w3 = w4

Plate w - w - 1.84 lb

(See Figure 5.1')

All Dlmensions In Inches.
Mass 11.36 lb.
0 - Locatlon of an accelerometer.

k80.75

5.90

Figure 5.2. Case 1 - Free-Free Beam Configuration of Accelerometers
(A Strategic Location).
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75.0 Meaured force
Predicted force

-75.0
0.0 7

TIM4E (SECONDS)

Figure 5.3. Case 1 - Free-Free Beam. Predicted Force Calculated from
the Effective Weights Determined from the Mode Shape Approach.

100 Measured force

Prsdlcted force-

-10

0.0'
TIME (SECONOS)

Figure 5.4. Case 1 Free-Free Beam. Predicted Force Calculated from
the Effective Weights Determined from the Mode Shape Approach.
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75.0 measured for~ce -

Predicted for'ce

0.0.7
TugE L8EcOS)

Figure 5.5. Case 1 -Free-Free Beam. Predicted Force Calculated from
the Effective Weights Determined from the Finite Element Approach.

too measured fore

dPrdicted for~ce

0.0
TIME (BEC05)U

Figure 5.6. Case 1 -Free-*Free Beam. Predicted Force Calculated from
the Effective Weights Determined from the Finite Element Approach.
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5.7). The results of using Equation (5.16) in this case is

1.0 1.0 1.0 1.0 1.0 wl 11.36'

27.37 13.08 0.0 -13.08 -27.37 w2  0.0

0.527 -0.766 -1.216 -0.766 0.527 -w3 - 0.0 (5.47)

-0.371 -1.287 0.0 1.287 0.371 w4  0.0

-1.008 -0.270 1.422 -0.270 -0.008 w5J 0.0

The effective weights determined by the mode and finite element approach

are much different (See Table 5.1). This was expected because, for the

finite element approach, the effective weights are always positive. The

results comparing the random input to this beam show small difference

between the predicted and the measured force (See Figures 5.8 and 5.10).

The impact loading showed high amplitude oscillation after the removal

of the load for both sets of predicted forces (See Figures 5.12 and

5.14). The impact loading has a higher bandwidth of frequencies.

The third case is that of an aluminum plate (See Figure 5.12). Only

the finite element approach was used to determine the effective weights.

These weights and the response accelerations were used to predict an

impact loading which is compared with the measured loading in Figure

5.13.
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Aill Dimensions In Inches.
Mass - 11.38 lb.
0- Location of an, accelerometer.

80 .75

13.00(14.29 13.08+ 108 -14.29+t3O00-

Figure 5.7. Case 2 - Free-Free Beam Configuration of
Accelerometers (A Routine Location).

75.0 measured fore

Pricd fo rce

0.0 .7

TIME ISECONICS.7

Figure 5.8. Case 2 -Free-Free Beam. Predicted Force Calculated from
the Effective Weights Determined from the Mode Shape Approach.
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75.0 Measured force -

Predicted force -

-75.0
0.0 .75

TIME (SECONiDS

Figure 5.9. Case 2 - Free-Free Beam. Predicted Force Calculated from
the Effecive Weights Determined from the Finite Element Approach.

All Dimensions In Inches.

Mass - 11.08 lb.

o - Location of an Accelerometer.

o 0 0

12

0 0 0

a 12 12 A

Figure 5.10. Case 3 - Plate Configuration.
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to0 Measiured force-

Predicted force

-100.2
0.0.2

TIME (SECONDS)

Figure 5.11. Case 3 Predicted anid Measured Forces for the Plate.
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CHAPTER 6.

PROCEDURES AND INSTRUMENTATION FOR DYNAMIC TESTING

6.0. Introduction.

A dynamic laboratory provides a facility to simulate a specific

vibrational environment and it normally has tighter control of the

parameters. A dynamic test of excites a structure and measures

indirectly the applied forces and responses to a structure. This

seemingly simple test process can be tedious, and the downfall for an

overall dynamic analysis. To prevent this problem, a microcomputer was

incorporated into a University of New Mexico vibration system.

Besides providing a means to transfer testing procedure information

by checklists and programming of manual tasks the microcomputer made

possible, by analog-to-digital and digital-to-analog converters, a

method for controlling random vibrations. An electrodynamic shaker

created the random vibration using a driving signal calculated from the

microcomputer. Each driving signal for a desired response is derived

using a frequency response function which is estimated as test runs are

performed. The desired simulated random vibration is produced

internally by randomizing the phase angles of a sine or cosine series.

For damageable specimens, this method prevents inadvertently

damaging the structure by accidentally overexciting the specimen. The

vibration from the shaker converges quickly to the desired excitation.

6.1. Description of Equipment.

The incorporation of the microcomputer as the controlling component

essentially developed a new alternative, a cost effective vibration



system (See Figure 6.1). The microcomputer generates and modifies the

driving signal for the shaker. The microcomputer contains 64k main

memory with 256k extended memory. The extended memory provided storage

of signals between processing. Analog- to-digital, A-D, converters;

digital-to-analog, D-A, converters; and clocks were installed in the

microcomputer. The converters used 12 bit binary numbers. This

provides a resolution of the signals from 0 to 4095. The setup allowed

ICROCOMPUTER -I
D-A CONVERTER

POWER
MPLIFIER

ACCELERO0METER

A-D CONVERTER

Figure 6.1. Vibration System with Microcomputer
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a D-A and an A-D conversion during the same scan. This configuration

can digitally convert up to 10,000 samples per second; however, only

2,000 samples per second were used.

Low pass filters were used, at both the output and input to the

converters, to prevent aliasing in the digital data. In this

application a cutoff frequency of 500 Hz was used.

The output driving signal was sent to an electromagnetic shaker

through a power amplifier whose frequency range is from 5 cps to 5,000

cps. The shaker operates in a 5-cps to 4,000-cps range and has a rated

force of 1,500 pounds.

The response was measured by piezoelectric accelerometer with power

supply and charge amplifier. The accelerometer was mounted on the same

platform as a test specimen.

6.2 Methodology and Testing Procedures.

For a linear single-degree-of-freedom structure, the response can be

determine in the frequency domain as

Y(w) - H(w) X(w), (6.1)

where Y(w) is the response, X(w) is the input, and H(w) is the response

function. If H(w) is known, then, an input could be determined for a

desired response, that is

X ( ) - [H(w)] 1 (), (6.2)

where X (w) is the input and X D(w) is the desired response. This
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LOAD xc(t} ) A D-A CONVERTERINTO MEMORY

I POWER

. ,ISHAKER

"-. CHARGE

.A-D CONVERTER !

I

HD°[,,) X0()/XC~w.j Cj STORE H"Dw,)

Figure 6.2. Step 1 to Determine H(w).

determination (Equation (6.2)) provides the basis for controlling the

shaking table by using the microcomputer.

For a driving signal to be calculated for a specific desired

response, the response function must be determined at least in the

frequency range of the desired response. The determination of H(w)
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falls into two categories: first where the test specimen assumes no

damage and second where the test specimen damages as the testing

progresses.

The estimation of the response function takes advantage of the

improved method proposed by Mitchell (1982). This estimation takes an

average of the common estimator of H(w) shown in Bendat (1986) and a

second estimator of H(w). Following the nomenclature of Mitchell

(1982), Bendat showed that the first estimator (common estimator),

G
H ()- Gxy (6.3)

xx

is less than or equal to the true transfer function. G is the

auto-spectrum or cross-spectrum of one or two signals respectively.

The second estimator, following the above nomenclature,

GH2(w) -G y  (6.4)

yx

was shown to be greater than or equal to the true transfer function.

The transfer function used in deriving the driving signal is the

average of HI(w) and H2 (w),

HI(w) + 1-2(w)

H(W) - 2 (6.5)

For the first category, the test specimen is assumed to be unchanged

and the transfer function remains constant. The driving signal is
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LOAD x D(t)
INTO MEMORY

FF-T XD(t) LOAD H D(W)
FROM STEP Ll

X'(wj HD(w)-IXD(w):

IFFl' X1 (w)

D-A CONVERTER

TO SHAKER

Figure 6.3. Step 2, Determine Input signal for a Desired Response.

calculated from

D n (w) - (H(w)]- IXn (W) (6.6)

where D n (w) is the driving signal to produce the desired excitation,
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x n(w). The estimation of H(w) is upgraded after each test with a new

average. Using these assumptions, the following procedures are used for

this category of test specimens (see Figure 6.2.).

1. A reference signal, x n(t), is generated and loaded in the

computer memory.

2. The fft of x n(t) is computed and the driving signal, D (w), is

computed by Equation 6.6.

3. The driving signal is transformed to the time domain ard fed to

the shaker system through the D-A converter.

4. The response is measured and used to compute H(w) and Hn(W).

5. An average of H n(w) is computed after each test run and stored

for future test runs.

6. Step 1-5 is repeated for each test run.

The second category of testing is for damageable specimens.

Initially a low input x (t) is applied to estimate the first H(w). This

prevents damaging the specimen. Second, as the specimen damages, the

H(o) changes; therefore, a weighted average of H(w) is implemented as

the test runs are performed. The procedures are similar to the first

category (see Figure 6.3).

6.3 Simulation of Digital Random Signal.

A computer generated waveform simulates a random process. The

waveform is stored as a digital signal that is transformed into an

analog signal by a digital-to-analog converter. The waveform is created

for a specific stationary random process by correlating with its

spectral density function, which allows applications for physical

phenomenons of stationary and special cases of nonstationary random
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processes.

A random process is classified by probability properties as

stationary or nonstationary (Bendat, 1986 and Newland, 1976). Two

properties, necessary in this report to classify the random processes,

are che mean value and the autocorrelation function.

For an ensemble of sample function, x.(t), (see Figure 6.4) the mein

valve, y (t n), is computed by taking the value of each x.(t) at time t ,

summing the values, and dividing by the number of sample functions, N.

The autocorrelation function, R xx(t n,t n+r) can be computed by taking the

ensemble average of the product of values at two times, t and t +r. InSn n

equation form, these two properties are

N

(t lim xk(t) (6.7)
N k a6l7

N

R (tnt+r) - lim xk(tn) Xk(tn+f) (6.8)
N - N k-1

where x k corresponds to a sample function and N is the number of sample

functions.

If either the mean square or the autocorrelation function vary as tn

varies, the random process is said to be nonstationary. If these two

properties do not vary with time, the process is called stationary or

weakly stationary. The random process is called strongly stationary, if

all probability moments are time invariant. Stationary random processes

are further divided into ergodic and nonergodic. The process is ergodic

if the mean value and autocorrelation function along any one sample

function are equal to the
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ensemble average. If the random process is not ergodic, it is called

nonergodic.

Pseudo or periodic random data simulate ergodic random processes by

correlating to its spectral density function. The spectral density

function, S(w), is the Fourier transform of the autocorrelation

function. Assuming only stationary random processes, S(w) is always

positive and symmetrical around the y-axis. Many individual sample-

functions, x n(t), correspond to one spectral density function.

The spectral density function shows a picture of the frequency
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Figure 6.5. Typical Narrow-Banded Spectra Density Curve.

X(O)

V- -V

Figure 6.6. Narrow-Band Rai.dom Vibration Signal
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Figure 6.7. Typical Wide-Banded Spectral Density Curve.

x(t) .A

Figure 6.8. Wide-Band Random Vibration Signal.
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Figure 6.9. Sine Waveform Spectral Density Curve.

content of a random process. Figure 6.5 shows a typical narrow-banded

spectral density function. The frequencies are concentrated in a small

area which indicates a time domain sample of the form shown in Figure

6.6. A wide-banded spectral density (see Figure 6.7) has a wide range

of frequencies. 1, corresponding time domain signals become more

erratic (see Figure 6.8).

The spectral density function of a sine wave has a value at one

point (see Figure 6.9). Using the spectral density function as the

reference for a random process, a combination of sine or cosine

waveforms will simulate the random process for experimental purposes.

In particular, one group of cosine waveforms is
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n

x(t) - Cj Cos(w1 t +Vj) (6.9)
j-1

where w., jl ,... n, are the band of frequencies, j,j=l ,.... n, are

'chose-n to be uniformly distributed random variable on the interval

(0,2n) and C., j-l,...,n, are equal to 2JS(wj)'&W

The values of Cj, j-1,. .. ,n, are derived by taking the R xx(r) of

Equation (6.9) (The notation, R xx(r), replaces R xx(t n,tn +r) for ergodic

random processes.). The substitution of time variable t and tI yields

R X(r - 47 j dV~ J dq.

n n

)C i C . cos( i tto'i) cos(Wt1 -9o.). (6.10)

Now consider when joi.

f14 f~ J d cosGwit0 -vi) cos(wjt1 -P1 ) - 0

41r -7r - W

Second consider when j-i.

C2 7 di J dVi cos(Wito Vi) cos(Witl- i) - 2w 2cos(wi(to-ti))

47r - -w

From Equation (6.10) and the above results
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n C2  n 2

Rxx(r) -i 1 2 W cs( i(t0-t1 ) - i cos(Wi(r)). (6.11)

As stated before, S(w) is defined to be the Fourier transform of the

autocorrelation function.

1 00

S(W) - 27 R xx(r)e' dr (6.12)

Consider substituting Equation (6.11) with limits of T into Equation

(6.12). First,

T n C2 T

SR(r) idr - 1 J cos(Wi(,r))eiW dr (6.13)

-T il1i2-T

The integral in Equation (6.13) is

Ti cos(Wi(r))e-iWrdr sin(wi-w)T sin(sii+w)T (6.14)J o~i~) r- + (.4

-T

Also,

sin(wT)
s dw - ff. (6.15)

From Equations (6.13), (6.14), (6.15) and T - ,
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f cos(wi(r))e iWrdr = [6(wM i+w)+6(wi-W)] (6.16)

where 6(w) is the delta function defined as

6(w) - 0 elsewhere (6.17)

Finally, substituting the results of Equation (6.16) into Equation

(6.13) yields

n

S()- - )G.[6(wi+w)+6(wi.w)] (6.18)

4 i il

From Equation (6.18), Ci, i-i ...,n, are determined to be Ci = 2

J S(Wi)Aw which was specified at the beginning as

n

x(t) 1 2 S(w i)AW cos(W t+,) (6.19)

where q., j-1.... n, is random distributed on the interval (0,2W), S(W)

is the value at w. and Aw is the bandwidth of the dividing interval forJ

the specific spectral density function (see Figure 6.10).

6.4. Experimental Tests.

In the specimen shown in Figure 11, the first and second mode of

vibration was 8 Hz and 58 Hz respectively. This specimen was being

tested for force identification. It was desired to excite predominantly
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the first mode of vibration. A spectral density function (see Figure

6.12) with bandwidth of 5 to 30 Hz was proposed for generating an

excitation signal. Using Equation (6.19), a random signal was produced

D
in the microcomputer. This became the desired response x (t) (see

Figure 6.13). In this test, the first run was done at the normal

levels, because the specimen was assumed to be undamaged after each run.

Figure 6.14 shows the modulus of HI (). In the region of concern the

curve is smooth, but outside this region this not true; however, the

values are not important in determining the input signal to obtain the

desired response.

Figure 6.15 shows the calculated signal to produce the desired

response. The desired and measured response are compared in Figure

6.13. The goal for this test run was to excite the first mode of

vibration. The modulus for the acceleration at mass 2 (see Figure 6.16)

shows that the first mode of vibration was excited.

I wI

Aw Aw

Figure 6.10. Spectral Density Notation Used in Equation (6.19).
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Figure 6.11. Force Identification Specimen.
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Figure 6.12. Spectral Density Curve with Bandwidth of 5 to 30 Hz.
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Figure 6.13. Desired and Measured Response.
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Figure 6.14. Modulus of H 1(to) for Force Identification Setup.
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CLAPTER 7.

SUMMARY AND CONCLUSION

7.0. Summary.

The main objective of this research was to develop an alternate

method to determine input forces to a structure. This method was the

sum of weighted acceleration technique, SWAT. The work which was

conducted for this research explored the assumption that SWAT can

accurately estimate forces that are applied to multi-degree-of-freedom

structures. The main discussion of the report focused on methods to

determine the effective weights of the following SWAT equation.

n

FR = w~a. (7.1)

i-i

A time domain approach and a frequency domain approach to determine

the effective weights were presented in chapter 2. Both of these

approaches used experimental data. This was an input-output data

formulation where the input data were forces that excited the structure

and the output data were the measurements of acceleration at specific

points along the structure. The frequency domain approach was less

sensitive to noise contained in the experimental data, but both methods

provided effective weights which produced favorable results. These two

approaches were first utilized with lumped mass systems that were

excited with a random force. In all cases when the input force was

plotted against the force that was calculated from SWAT, the comparison

was almost perfect.



In chapter 3, these two experimental approaches were applied to

continuous systems. In addition to the random excitation, impact

loadings were applied to the structures. The random excitation

experiments duplicated the results of the lumped mass systems. The

impact loading tests showed a trend of SWAT to be "band-limited."

Band-limited in this case, means that the content of the input force in

the frequency domain has power at a specific range of frequencies. The

force history record which was calculated from SWAT predicted the main

events. In the regions after the main events, the results showed that

the higher vibration modes continued to vibrate without the effective

weights cancelling the resulting force.

SWAT accurately predicted the forces for nonlinear structures. The

nonlinearity for the test specimens in this research where graphed by a

force-mapping technique.

The above approaches required experimental data to determine the

effective weights for a structure. Two methods not requiring

experimental data were developed using the mode shape of a structure and

finite elements. The use of these approaches opens avenues for more

applications where experimental excitation of a structure is virtually

impossible. The mode shapes of a structure may be determined from a

number of different methods such as finite elements or finite

difference. Applications and results of these methods are shown in

Chapter 5.

7.1. Conclusions.

SWAT was developed to provide an alternate means of calculating the

input forces to a structure. Conclusions from this research are as

115



follows:

1. SWAT is a simple and powerful approach to determine input forces

for multi-degree-of-freedom structures. The method requires only

measured accelerations and effective weights for the structure to

determine the input force.

2. The band-width of the input forces is important when considering

the number of effective weights to use. In general, the more locations

to measure the accelerations used in SWAT, the wider the bandwidth for a

','cific set of effective weights.

3. SWAT predicts input forces for both linear and nonlinear

structures.

4. The use of methods such as the mode shape approach and finite

element approach allow the use of SWAT without using experimental data

to determine the effective weights. This is especially important for

large structures.
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APPENDIX 1.

DATA RECORDS FOR LUMPED MASS SYSTEMS

Al.0 Introduction.

In Chapter 2, symmetric (see Figure 2.2) and antisymmetric (see

Figure 2.3) test specimens were used to respresent a lump mass system.

Seven test runs of different bandwidth of random excitation were

performed on each specimen. Test runs 1, 3, and 5 were used to

determine the effective weights. The other runs were used for comparing

the predicted force, which was determined using SWAT, to the measured

force. This appendix contains plots of the experiment data records for

each of the specimens for test runs 1, 3, and 5.

A1.1 Synetric Records.

TABLE Al.I Symmetric Lump Mass Specimen's Reference for Plots ot
Test Runs 1, 3, and 5.

Test Run # 1 3 5

Bandwidth of 0-50 Hz 110-200 Hz 0-200 Hz
Excitation

Acceleration Record Figure Al. Figure Al.7 Figure A1.13
of Mass 1

Modulus of Acceleration Figure A1.2 Figure A1.8 Figure A1.4
Record of Mass I

Acceleration Record Figure A1.3 Figure Al.9 Figure A1.15
of Mass 2

Modulus of Acceleration
Record of Mass 2 Figure AI.4 Figure AI i0 Figure AI.16

Force Record Figure A1.5 Figure AI.11 Figure AI.17

Modulus of
Force Record Figure AI.6 Figure AI.12 Figure A18
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Figure Al.l. Acceleration Record of Mass 1 for Symmetric Test
Specimen of Test Run 1.
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Figure A1.2. Modulus of Acceleration Record of Mass 1 for
Symmnetric Test Specimen of Test Run 1.
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Figure A1.5. Force Record for Symmnetric Test Specimen of
Test Run 1.
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Figure A1.6. Modulus of Force Record for Symmetric Test
Specimen of Test Run 1.
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Figure Al.7. Acceleration Record of Mass I for Syunetric Test
Specimen of Test Run 3.
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Figure Al.8. Modulus of Acceleration Record of Mass I for
Symmetric Test Specimen of Test Run 3.
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Figure A1.9. Acceleration Record of Mass 2 for Symmetric Test

Specimen of Test Run 3.
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Figure A1.10. Modulus of Acceleration Record of Mass 2 for
Symmetric Test Specimen of Test Run 3.

122



200

150

100

. -50

0U
L-
0

50

100

-150

-200 I- I
0.000 0.050 0.100 0,150 0.200 0.250

Time (seconds)

Figure A1.11. Force Record for Symmetric Test Specimen of
Test Run 3.
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Figure A1.12. Modulus of Force Record for Symmetric Test

Specimen of Test Run 3.
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Figure A.13. Acceleration Record of Mass 1 for Symmetric Test

Specimen of Test Run 5.
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Figure A1.14. Modulus of Acceleration Record of Mass 1 for
Symmetric Test Specimen of Test Run 5.
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Figure A1.15. Acceleration Record of Mass 2 for Symmetric Test
Specimen of Test Run 5.
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Figure A1.16. Modulus of Acceleration Record of Mass 2 for
Symmetric Test Specimen of Test Run 5.
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Figure A1.17. Force Record for Symmetric Test Specimen of

Test Run 5.

40-

35-

30-

:925-

-220-

o015-

5-
04

0 50 100 150 200 250 300
Frequency (Hertz)

Figure A1.18. Modulus of Force Record for Symmetric Test
Specimen of Test Run 5.
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A1.2 Antisymetric Records.

TABLE Al.2 Antisymmetric Lump Mass Specimen's Reference for Plots
of the Test Runs 1, 3, and 5.

Test Run # 1 3 5

Bandwidth of 0-50 Hz 110-200 Hz 0-200 Hz
Excitation

Acceleration Record Figure A1.19 Figure Al.29 Figure Al.39
of Mass 1

Modulus of Acceleration
Record of Mass I Figure AI.20 Figure AI.30 Figure AI.40

Acceleration Record Figure A1.21 Figure A1.31 Figure A1.41
of Mass 2

Modulus of Acceleration
Record of Mass 2 Figure AI.22 Figure AI.32 Figure AI.42

Acceleration Record
of Mass 3 Figure A1.23 Figure A1.33 Figure AI.43

Modulus of Acceleration
Record of Mass 3 Figure A1.24 Figure A1.34 Figure A1.44
AceeinRecord3
Acceleration Record Figure A1.25 Figure A.35 Figure AI.45
of Mass 4

Modulus of Acceleration
Record of Mass 4 Figure AI.26 Figure AI.36 Figure Al.46

Force Record Figure A1.27 Figure Al.37 Figure Al.47

Modulus ofForce Record Figure Al.28 Figure A1.38 Figure Al.48
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Figure A1.19. Acceleration Record of Mass 1 for Antisymmetric
Test Specimen of Test Run 1.
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Figure Al.20. Modulus of Acceleration Record of Mass 1 for

Antisymmetric Test Specimen of Test Run 1.
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Figure Al.21. Acceleration Record of Mass 2 for Antisymmetric
Test Specimen of Test Run 1.
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Figure A1.22. Modulus of Acceleration Record of Mass 2 for

Antisymmetric Test Specimen of Test Run 1.
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Figure Al.23. Acceleration Record of Mass 3 for Antisymmetric
Test Specimen of Test Run 1.
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Figure AI.24. Modulus of Acceleration Record of Mass 3 for

Antisymmetric Test Specimen of Test Run 1.
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Figure Al.25. Acceleration Record of Mass 4 for Antisymmetric

Test Specimen of Test Run 1.
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Figure A1.26. Modulus ot Acceleration Record of Mass 4 for

Antisymmetric Test Specimen of Test Run 1.
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Figure A1.27. Force Record for Antisymmetric Test Specimen of

Test Run 1.

40,

35-

30-

~25-

'20-

o 15-

10-

5-

0
0.000 50.000 100.000 150.000 200.000 250.000

Frequency (Hertz)
Figure A1.28. Modulus of Force Record for Antisyminetric Test

Specimen of Test Run 1.
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Figure Al.29. Acceleration Record of Mass 1 for Antisymnietric
Test Specimen of Test Run 3.
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Figure A1..30. Modulus of Acceleration Record of Mass 1 for-

Antisymnietric Test Specimen of Test Run 3.
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Figure Al.31. Acceleration Record of mass 2 for Antisynunetric
Test Speciment of Test Run 3.
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Figure A1.32. Modulus of Acceleration Record of Mass 2 for

Antisymmetric Test Specimen of Test Run 3.
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Figure Al.33. Acceleration Record of Mass 3 for Antisymmetric
Test Specimen of Test Run 3.
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Figure AI.34. Modulus of Acceleration Record of Mass 3 for

Antisymmetric Test Specimen of Test Run 3.

135



20-

15-

10-

% 5-
C
0

o 0-

10-

-15.

-2 L--
0.000 0.050 0.100 0.150 0.200 0.250

lime (seconds)
Figure A1.35. Acceleration Record of Mass 4 for Antisymnietric

Test Specimen of Test Run 3.
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Figure A1.36. Modulus of Acceleration Record of Mass 4 for
Antisymmetric Test Specimen of Test Run 3.

136



200-

150-

100-

50-

* 0-

-~50.

-100.

-150-

-200
0.000 0.050 0.100 0.150 0.200 0.250

Time (seconds)

Figure A1.37. Force Record for Antisynimetric Test Specimen of
Test Run 3.
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Figure A1.38. Modulus of Force Record for Antisyminetric Trest
Specimen of Test Run 3.
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Figure A1,.39. Acceleration Record of Mass 1 for Antisymmetric

Test Specimen of Test Run 5.
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Figure Al.40. Modulus of Acceleration Record of Mass 1 for

Antisymmetric Test Specimen of Test Run 5.
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Figure Al.41. Acceleration Record of Mass 2 for Antisymmetric
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Figure A1.42. Modulus of Acceleration Record of Mass 2 for

Antisymmetric Test Specimen of Test Run 5.
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Figure A1.43. Acceleration Record of Mass 3 for Antisymmetric

Test Specimen of Test Run 5.
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Figure Al.44. Modulus of Acceleration Record of Mass 3 for

Antisymmetric Test Specimen of Test Run 5.
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Figure A1.45. Acceleration Record of Mass 4 for Antisymmetric

Test Specimen of Test Run 5.
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Figure A1.46. Modulus of Acceleration Record of Mass 4 for
Antisymmetric Test Specimen of Test Run 5.
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Figure Al.47. Force Record for Antisyminetric Test Specimen of
Test Run 5.
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APPENDIX 2.

RECURSIVE LEAST SQUARE AILORITHK

C
G THIS IS THE MAIN PROGRAM FOR TIME DOMAIN
C SYSTEM IDENTIFICATION
C
C THIS PROGRAM IS FOR 1 TO 5 PARAMETER TO IDENTIFY.
C

REAL*8 AA(5),FS,GN(5,5),GX(5),GP(5,5)
REAL*8 XT(5),TP(5)
REAL*8 RS,PA(5,5),PT(5,5),ALPHA
INTEGER ANS,L,M
CHARAGTER*10 NAME(S) ,NAMEF,OUTPUT,INTT

DATA LDA /5/
C
C SET THE DIMENSION OF THE SUBROUTINES
C

GO TO 20
9 WRITE (6,10)

10 FORMAT('*******************,

1/' 1.CHANGE VALUES.',
1/' 2.I.D. PARAMETERS.',
1/' 3.STOP.',
1/' INPUT A NUMBER (1-3)',

READ (5,*) ANS
IF (ANS.EQ.1) GOTO 20
IF (ANS.EQ.2) GOTO 30
IF (ANS.EQ.3) GOTO 40
GO TO 9

20 write(6,*)'INPUT THE NUM.OF I.D. PARAMETERS (1-5)'
READ (5,*) L

IF(L.LT.1.OR.L.GT.5)GOTO 20
write(6,*)'INPUT ALPHA. (INITI.VALUE FOR PA MATRIX)'
READ (5,*) ALPHA

write(6,*)'INUT THE NUMBER OF POINTS TO DELETE AS BEGINNING'
READ(5 ,*)ND

write(6,*)'INPUT TOTAL PTS'
READ (5,*) N

write(6,*)'INPUT NAME OF AA (INITI.VECTOR FOR I.D. 10 CHAR.),
READ(5, 21)INTT
write(6,*)'INPUT THE FILE NAMES OF THE COLUMN OF MATRIX A'
DO 19 I-1,L

write(6,*)'INPUT THE FILE FOR COLUMN ',I
READ(5 ,21)NAME(I)

19 CONTINUE
21 FORMAT (AlO)

write(6,*)'INPUT NAME OF FORCE FILE.(1O CHAR.)'
READ (5,21) NAMEF



write(6,*)'INPUT NAME OF OUTPUT I.D.PARAM'NTER.(1O CHAR)'
READ (5,21) OUTPUT

C
WRITE (6,22) L,ALPHA,ND,N,INTT,(NAME(I),I-1,5),NAMEF,OUTPUT

22 FORMAT (lX,T3,'L - I4
1/,T3,'ALPHA - ',D19.12,
1/,T3,'DELETE PTS - 'I1io,
1/,T3,'TOTAL PTS - 1,110,
1/,T3,'INITI. VECOTRS - ',AlO,
1/,T3,'COLUMN VECTORS - ',AlO,
1/,T3,1 ',A1O,
1/,T3,1 ',A1O,
1/,T3,, ',AlO,
1/,T3,' 'PA1O,
1/,T3,'FORCE FILE - ',A1O,
1/,T3,'I.D. PARAM.FILE - ',A1O)
CO TO 9

30 CLOSE (5)
DO 31 I=1,L
11-6+1
OPEN (UNIT=II,FILE-NAME(I) ,STATUS-'OLD')

31 CONTINUE
OPEN (UNIT-i ,FILE-NAMEF, STATUS-' OLD')

OPEN (UNIT-2 ,FILE-OUTPUT, STATUS-'EW)
OPEN (UNIT-3,FILE-INTT,STATUS-'OLD')

WRITE (2,22) L,ALPHA,ND,N,INTT,(NAME(I),I-1,5),NAMEF,OUTPUT
write (6, *) '*******PROCEED"'G***********'
DO 50 IP-1,L.

READ (3,*) AA(I)
50 CONTINUE

Do 300 1-1,L,
11-6+1
DO 300 J-1,ND

READ(II ,*)GAR
300 CONTINUE

IF(ND.LT.1)GOTO 311
DO 310 I-1,ND

READ(1 ,*)GAR
310 CONTINUE
311 Do 60 I-1,L

DO 60 J-1,L,
PA(I,J)-O.

60 CONTINUE
Do 61 I-1,L

PA(I ,I)-ALPHA
61 CONTINUE

DO 70 I-1,N
DO 80 J-1,L.
I I-6+J
READ(II ,*)XT(J)

80 CONTINUE
CALL MULRM (LDA,XT,L,PA,L,TP)
CALL MULRC (TP,L,XT,GA)
GAM-i ./(1 .+GA)
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DO 81 J-1, L
DO 81 K-1, L

GN(J ,K)-GAM*PA(J ,K)
81 CONTINUE

CALL MULMC (LDA,GN,L,L,XTGX)
CALL MULCR (LDA,GX,L,TPGP)
CALL MULRC (XT,L,AA,TA)
read(1,*)fs
DO 85 J-1,L

AA(J)-AA(J)+CX(J)*(FS-TA)
DO 85 K-1,L

PA(J ,K)-PA(J ,K) -CP(J,K)
85 CONTINUE
95 CONTINUE
70 CONTINUE

DO 200 J-1,1,
WRITE(2 ,*)AA(J)

200 CONTINUE
40 continue

STOP
END
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